The post appeared first on Terra Magazine.

]]>From left: Elise Lockwood, Christine Escher, Holly Swisher, Elaine Cozzi, Mary Beisiegel, Vrushali Bukil, Malgo Peszynska, Mary Flahive. (Photo: Hannah O’Leary)

*By Srila Nayak*

Mathematics associate professor Holly Swisher is eloquent about what it means to be a woman mathematician at a time when the number of female research mathematicians continues to remain low.

“I think the biggest obstacle for an individual in an underrepresented group is just being able to see yourself doing a certain job that people have never imagined someone like you doing. I can think of at least three instances when a female student has come up to me and said, ‘Meeting you makes me visualize myself in this job.’”

Swisher is one among nine women tenure track faculty in Oregon State University’s Department of Mathematics, an impressive number considering the national trend. When you do the math, that’s 30 percent women in the department, which is home to 30 tenured and tenure-track faculty.

According to a 2010 survey by the Conference Board of the Mathematical Sciences, women comprise only 14 percent of the tenured and tenure-line faculty at doctoral-level mathematics departments. Despite gains in the numbers of women opting to study math and science*, a large disparity exists between men’s and women’s representation in tenured and tenure-track positions in the fields of mathematics, physics and engineering.

The statistics clearly indicate that the gender composition of OSU’s Mathematics Department marks a striking departure from the norm.

Currently, the department has three tenure-track women mathematicians: Elaine Cozzi, Mary Beisiegel and Elise Lockwood. It has two associate professors, Vrushali Bokil and Holly Swisher, and four professors, Mina Ossiander, Mary Flahive, Christine Escher and Malgo Peszynska.

Ossiander, who joined the department in 1988, was the first woman to become a full professor. The women mathematicians boast of highly impressive research and teaching accomplishments. They have received competitive research grants from prestigious institutions across the country and have been lauded for their extraordinary teaching and service contributions.

Cozzi was awarded a four-year National Science Foundation (NSF) grant for a project on mathematical fluid mechanics and the graduate student faculty award for her mentorship and teaching. Bokil has received multiple NSF awards as well as grants from the National Energy Technology Laboratory (NETL). She is currently collaborating with a mix of biologists and mathematicians on a project funded by NIMBioS, the NSF-funded National Institute of Mathematical and Biological Synthesis.

Escher has received grants from the NSF and the Association for Women in Mathematics for her work in algebraic topology and differential geometry. Mary Flahive has collaborated with Bella Bose in computer science on work funded by NSF. She has written three books, including a research monograph published by the American Mathematical Society, and has received the College of Science’s Olaf Boedtker Award for Excellence in Undergraduate Advising.

A computational mathematician, Malgo Peszynska has received numerous NSF and Department of Energy grants (DOE, NETL) for her interdisciplinary research projects spanning applications in hydrology, oceanography, environmental engineering, physics and materials science.

Ossiander, whose research encompasses theoretical and applied probability, has been principal investigator and co-investigator on a number of grants from NSF and other governmental agencies. Recently she has contributed her expertise in statistical modeling to interdisciplinary projects in hydrology and geostatistics.

Holly Swisher is a member of one of the most ambitious mathematical collaborations in recent times. She was chosen to join a team of more than 70 mathematicians from 12 countries who worked over a period of five years to create a massive mathematical database called the “L-functions and Modular Forms Database” (LMFDB). The database catalogs objects of central importance in number theory and maps out the intricate connections between them.

A specialist in mathematics education for post-secondary teaching, Mary Beisiegel has been awarded an NSF “Improving Undergraduate STEM Education” grant, a collaborative effort among 11 institutions aimed at improving teaching in lower-division mathematics and science courses.

Elise Lockwood, an expert in mathematics education research, is a co-principal investigator on a grant awarded by the NSF Research on Education and Learning (REAL) program.

Lockwood investigates student learning in a variety of mathematical environments. “My zeal for math education research developed when I took a combinatorics class,” Lockwood observed. “I fell in love with counting problems and became obsessed with learning everything I could about why students struggle to solve such counting problems and how I could help them improve.”

Many say they learn something new every day as mathematicians.

“I loved math before I knew what a ‘career’ is,” said Peszynska, who grew up in Poland and once encountered a university professor who called her parents to suggest they steer their daughter to a career other than mathematics. Her sentiments toward the pursuit of mathematics are widely shared by her colleagues.

“What inspires me is my love for teaching mathematics and sharing the conceptual ideas and representations with students,” emphasized Beisiegel. Escher enjoys studying the “powerful tools” of algebraic topology and their uses in various other fields such as differential geometry and theoretical physics. “It is a beautiful connection between different areas of mathematics that leads to strong classification theorems.”

**Dual career mathematician couples**

In a study of dual-career academic couples by Stanford University’s Clayman Institute of Gender Research, a participant remarked, “Talented academics are often partnered, and if you want the most talented, you find innovative ways of going after them.” Not surprisingly, traditionally a lack of institutional support for dual-career hiring or meeting the needs of academic couples has held women back from pursuing competitive jobs in academic STEM fields.

A key reason behind the Mathematics Department’s success in hiring and retaining higher numbers of female mathematicians is its friendly and encouraging attitude toward accommodating academic couples. The department has successfully implemented a dual hiring initiative in several cases and currently has five mathematician couples in tenured or tenure-track positions — all of whom were partnered before they arrived at Oregon State.

There is ample evidence suggesting that lack of career support for partners leads to a high proportion of women accepting non-tenure-track and part-time positions at research universities, instead of tenured or tenure-track positions. The American Association of University Professors views partner hiring at academic institutions as “common and necessary.”

There is yet another unconventional feature that sets the Mathematics Department apart from most other academic departments. In most of its dual partner hires, the woman was the first hire. According to a survey of 9,000 full-time faculty at 13 leading U.S. research universities, men comprise the majority of first hires — 58%, in fact, reported Stanford University’s Clayman Institute. OSU’s Mathematics Department has reversed the gender ratio in this respect.

Bokil observed that four of the six women mathematicians were the first hire. OSU was able to successfully hire their partners for faculty positions as well. It was a win-win situation: the partner hires brought skills and qualifications that matched important research and teaching objectives in the department.

When Cozzi was interviewed, she informed the hiring committee that her mathematician spouse, Clay Pletsche, was in the job market as well. They were both interviewed and both offered tenure-track jobs.

“The department made a huge effort to consider both of us for jobs. They are very good at taking advantage of situations where there are two people who want to come and are quality candidates,” said Cozzi.

Mentorship has also played a significant role in enhancing the career success of women faculty.

“This department has been, in addition to creating space for spouses, really good in mentoring young faculty,” Bokil pointed out. She was mentored by men and women in the department and received valuable advice on writing grants, editing proposals and applying to workshops and conferences.

“In our department, people go out of their way to think of others, help others, promote others,” added Bokil. Several research studies have shown the significance of mentoring for women’s success in achieving tenure and promotion.

A number of OSU women mathematicians say they attended Ph.D. programs where there were no or very few female research professors. Flahive, who did her doctoral studies at Ohio State University in the 1970s, was just one of two women students in her year.

Swisher had very few women professors in graduate school. “At University of Wisconsin-Madison, while I was a graduate student, there were only two female faculty out of 50 professors. It was very different from here,” said Swisher.

Little wonder then that Oregon State’s Department of Mathematics feels like a breath of fresh air to its women professors.

The department’s younger women mathematicians were encouraged at what they saw during the interview process: the hiring committees were either chaired by women or comprised women members.

“I think, in some degree, I was drawn to a department where I saw other women. OSU Math has done a really good job ensuring they interview qualified women candidates and then give them a chance to showcase their work,” said Cozzi.

Flahive, who joined the department in 1990, has witnessed the gender diversification of the Mathematics Department over the years.

“It has something to do with the attitude of my colleagues. We don’t think of hiring women mathematicians as unusual.”

**Overcoming biases and stereotypes**

Society at large continues to stereotype mathematics as a male domain, and such beliefs can discourage women from entering or pursuing mathematical careers. A 2010 CBMS survey reported that women earn 45% of the undergraduate degrees in mathematics, but women comprise only 11% of tenured faculty and 27% of tenure-eligible faculty in doctoral mathematics departments.

OSU’s Mathematics Department has done its fair share to overturn stereotypes about gender and mathematical ability and send a powerful message that women can do math and excel at very high levels of mathematical performance.

Women mathematicians at OSU have mentored and advised high numbers of women undergraduate and graduate students as well as postdoctoral researchers over the years. Bokil proudly mentioned that her first doctoral student was a woman who is pursuing a successful research career at Los Alamos National Laboratory.

They are also acutely aware of their influence as educators and mentors in a field that has fewer female role models.

Swisher is the organizer and faculty mentor of OSU’s highly successful Research Experiences for Undergraduates (REU) program in Mathematics, an NSF-funded research program in mathematics and theoretical computer science for undergraduate students that has been held nearly every summer since 1987.

Focused on cutting-edge research in pure and applied mathematics, the REU program supports 10 undergraduate students and runs for eight weeks in the summer. The program has a strong track record of enrolling at least 50 percent female students in each cohort from large and small, public and private universities who would not otherwise be exposed to the research process.

There were times as a student when Cozzi, who conducts research in mathematical analysis, admits she would find herself thinking, “I am the only woman in this room. Maybe there is something to this idea that I don’t belong.” Cozzi is pleased that some of the women she is teaching may see her and believe that a research career in mathematics is possible.

Over the years, Bokil has found herself thinking about cultural forces that stand in the way of women mathematicians. After attending numerous mathematics conferences throughout her career, she was struck by the privileges enjoyed by men.

“I notice that male mathematicians at conferences get more exposure, more access to research networks and collaborations. It can appear as an impenetrable men’s club.” This year, Bokil is part of a research group of three women that has received funding to do research at the Institute of Computational and Experimental Research in Mathematics (ICERM) at Brown University and the Mathematisches Forschungsinstitut Oberwolfach (MFO) in Germany.

“I was determined to find more women mathematicians to work with. I think this is one way women mathematicians can be successful — by coming together to form research teams,” Bokil said.

A number of initiatives exist to redress gender imbalance in mathematics and combat entrenched sociocultural biases that hold back women mathematicians in the areas of research collaboration, promotions, research awards, inclusion in journal editorship, scientific associations and conference committees. Prominent among them is the Association for Women in Mathematics (AWM), which supports domestic and foreign research travels for women mathematicians and has recently received a $750,000 NSF ADVANCE grant to help establish research networks for women by fostering research collaborations at conferences and AWM Workshops.

**According to the National Science Foundation, women earned 6 percent of doctorates in mathematics in 1966. In 2006, nearly 30 percent of mathematics doctorates were earned by women.*

** **

**Sources:**

Schiebinger, Londa, et al. “Dual-Career Academic Couples: What Universities Need to Know.” Michelle R. Clayman Institute for Gender Research, Stanford University, 2008.

Blair, Richelle, et al. Conference Board of Mathematical Sciences Survey Reports 2010. American Mathematical Society, 2013.

Jaschik, Scott. “Doing ‘Dual Career’ Right.” *Inside Higher Ed*, 2010.

National Science Foundation, Division of Science Resources Statistics, 2008, Science and engineering degrees: 1966–2006. http://www.nsf.gov/statistics/degrees

Peszynska, Malgorzata. “Meet Malgorzata Peszynska.” Oregon Women in Higher Education, 2015. http://www.owhenet.jigsy.com/entries/bios/july-meet-malgorzata-peszynska

The post appeared first on Terra Magazine.

]]>The post Holly Swisher appeared first on Terra Magazine.

]]>In her first year in college (Pacific Lutheran in Tacoma), music almost won out over mathematics for Holly Swisher’s attention. During her high school years in Salem, she had played piano and bassoon in a youth symphony, sang in a choir and even played drums in the marching band.

But her love of math wouldn’t play second fiddle. She transferred to the University of Oregon where she majored in the subject. Her journey included a Research Experience for Undergraduates (REU) program at Trinity University in Texas where she “sat in an office and did math all day, every day. And it was amazing. ‘I love this,’” she recalls thinking.

At Oregon State, she teaches and organizes an REU program in mathematics. But what sparks her creativity is number theory. She investigates the properties of numbers, for example, that arise from partitions and the analysis of complex functions. She describes doing mathematics as “an art that is precise, beautiful and appealing.”

Terra*: What accomplishment are you most proud of?*

“I’ve had doubts about research in my career, and I’m really proud of pushing through them. But what I’m most proud of is mentoring students. I feel like I have definitely helped people become successful, and that makes me really happy.”

Terra*: How have gender and diversity influenced your career?*

“I think people have a typical view of a mathematician as an older white male. When I started going to conferences, I dreaded flying because I’d have to have the conversation with the person next to me. ‘Oh, you do math? Wow.’ Or it would just get really awkward because they wouldn’t expect it.

“I don’t blame people, certainly. But I realized that every single time, they were telling me that I’m weird, or that I don’t belong or that I picked something really weird to do.

“More upsetting were evaluations I got from two students in a large calculus class during my post-doc at Ohio State. They wrote that they had a hard time taking me seriously because I didn’t dress like a professor but like a young woman. Since I was a 27-year-old woman at the time and a professor, this really threw me off. My young, casual-dressing male colleague received no such criticisms. I haven’t had comments like that here.

“I’ve also had very positive experiences. For example, I am part of a community called Women in Numbers designed to build research collaborations between women in my field. It has created an amazingly strong network. It’s been so productive. I say this literally saved my research career at a crucial time when I was in doubt.”

The post Holly Swisher appeared first on Terra Magazine.

]]>The post da Vinci Days 2013: Stories from the Edge of Science appeared first on Terra Magazine.

]]>Leonardo da Vinci combined the practical and the beautiful, the mechanical and artistic. At the 2013 da Vinci Days festival in Corvallis, Oregon State University scientists, engineers and mathematicians shared their journeys under Antarctic sea ice, to an African village, to Mars and through a mathematical landscape. They told of voracious bullfrogs, wood colonized by colorful fungi, currents in the coastal ocean, and Jell-O-like beads that could deliver medicines and clean up polluted groundwater.

Welcome to ** Stories from the Edge of Science**, da Vinci Days 2013.

Jack Barth, College of Earth, Ocean, and Atmospheric Sciences. *Ocean Exploration with Underwater Gliders*

Dan Rockwell, Department of Mathematics. *A Mathematical Detective Story: Decoding the Golden Ratio*

Martin Fisk, College of Earth, Ocean, and Atmospheric Sciences. *Curiosity on Mars: NASA’s search for habitable environments*

Sara Robinson, College of Forestry. *The Art and Science of Spalted Wood*

Andrew Thurber, College of Earth, Ocean, and Atmospheric Sciences. *Life in the Polar Ocean*

Tiffany Garcia, College of Agricultural Sciences. *Bullfrogs and Other Threats to Aquatic Ecosystems*

Skip Rochefort, College of Engineering. *Stories from the Game of Life: Engineering for fun and function*

Zachary Dunn, graduate student in the Master of Public Policy program. *Kel Wer: A film about water, survival, and hope in Lela, Kenya*

Michael Wing, College of Forestry. *The Future of Unmanned Aerial Systems*

The post da Vinci Days 2013: Stories from the Edge of Science appeared first on Terra Magazine.

]]>The post Glass Half Full (roughly speaking) appeared first on Terra Magazine.

]]>*By Nick Houtman*

The next time you sip a glass of spring water, consider this: Before it got to your lips, that water was soaking through soil, creeping along basalt crevices or flowing through porous volcanic rock. It nurtured microbes, carried dissolved minerals and may have spread the byproducts of human activities. Its pivotal role in the environment has made groundwater a headline topic in human health, waste management and water supplies for growing communities.

One number — 924 million — indicates how vital groundwater is to Oregon. That’s the number of gallons that the U.S. Geological Survey estimates were pumped from Oregon’s aquifers on an average day in 2000. More than 80 percent went to agriculture, most for irrigation.

Large as that number is, it barely begins to tell the story. It is in the subsurface — difficult to see or measure — where the groundwater drama unfolds, and where water availability and purity are subject to the vagaries of geology. Here, uncertainty is a fact of life. And that’s where OSU mathematicians are focusing their efforts to improve the models — equations translated into software code — that help water managers predict the behavior of this unseen resource.

“We really don’t know what’s in the subsurface, and we never will know,” says Malgorzata Peszynska, associate professor in the Department of Mathematics. “You can run seismic waves through it and get a relative idea of how one layer is related to another layer. You can drill observation wells and collect data, but you still don’t know.”

Born and raised in Warsaw, Poland, Peszynska has been working to improve subsurface models for almost two decades. Her love of math goes back to her youth. Undaunted by the teacher who told her there was no future in mathematics for a woman, she received a Ph.D. in the subject at the University of Augsburg in Germany. Her dissertation focused on mathematical techniques for describing liquid flow through porous materials.

In 1994, an invitation to work with one of the field’s leading lights, Jim Douglas Jr. at Purdue, brought her to the United States. Before joining the OSU math department in 2003, she conducted research with Mary F. Wheeler at one of the nation’s leading centers for subsurface modeling, the Institute for Computational Engineering and Science at the University of Texas.

Now, with grants from the U.S. Department of Energy and the National Science Foundation, she is working with students, postdoctoral researcher Son-Young Yi and co-principle investigator and math department chair Ralph Showalter to refine mathematical methods and develop new approaches for simulating groundwater flow.

The researchers are focusing on numerical and computer models. It goes without saying that these sets of equations are complex. They include terms for the velocity of water movement, the porosity and permeability of rock layers and the pressure exerted by water percolating into an aquifer from mountain ridges and other high places.

By simulating water flow through these systems, models can provide insight into how much water is available for human uses and other purposes, but complexity carries a cost. It can add days or weeks to computing time, even on today’s fast computers, such as OSU’s 73-dual-processor SWARM machine in the School of Electrical Engineering and Computer Science.

So the research team’s goal is to develop techniques that can achieve higher accuracy and run in less time. One approach is to simplify details that, in the final analysis, are marginal. That is, they don’t make the model significantly more accurate. The result is what researchers call an “upscaled” model.

“For example,” Peszynska says, “in fractured materials (bedrock), we know there are periodic structures separating blocks of clay (or other impervious materials). Instead of trying to simulate the flow at this scale, we try to come up with an upscaled model of this kind of phenomenon.” The goal is a solution that is close to the original model but does not require as much computational power.

Another goal is to link models that operate at one level — water movement through sand grains, for example — to those that work over a broader scale, such as an entire watershed from mountain ridge to valley floor.

“The use of models that are suitable for laboratory experiments to describe processes on the scale of a watershed will bring any computer to its knees,” says Showalter. “We’re trying to connect information at the microscale to the big picture, and for that we need new mathematical systems that at least give the computers a chance.”

Other OSU faculty members are working on related problems. In the Department of Civil, Construction and Environmental Engineering, Dorthe Wildenschild conducts experiments to understand how fluids behave in the spaces between sand grains. She and Ph.D. student Mark Porter use high-performance X-ray tomography at the Argonne National Laboratory in Illinois to see how air mixes with drops of oil and water in such tight quarters. The speed of these interactions is a critical factor in treating groundwater contaminated by toxic chemicals.

Meanwhile, the speed of model simulation is a factor in the research. “We fly out to Chicago and do the pore-scale experiments in three to four days,” says Wildenschild. “It takes Porter several months to run an equivalent simulation at that small scale on the high-performance computer (SWARM) here on campus.”

In the same department, Brian Wood has worked with Peszynska, Showalter, Enrique Thomann and Ed Waymire in math to characterize groundwater flow in porous materials. Wood focuses on the application of upscaling to the subsurface and to engineered porous systems such as chemical reactors, bioreactors in wastewater plants and sand filters used to clean drinking water. Wildenschild, Wood and other OSU engineers are also collaborating with scientists at the Department of Energy’s Pacific Northwest National Lab in Richland, Washington.

The OSU research couldn’t come at a better time. The need for better models is growing, says Michael Campana, a hydrogeologist and director of OSU’s Institute for Water and Watersheds. Officials who manage water supplies in places such as Oregon’s Klamath, Umatilla and Willamette basins, need to predict availability as demand grows and climate conditions change.

Models are useful approximations of the real world, says Campana, but “uncertainty can stem from the data or from imperfections in the model. It’s a real problem, and it’s getting worse. People are using models to look further into the future. Water managers are increasingly asking what a changing climate will mean for their water resources in 50 years or more. If we give them a number and tell them it could be 30 percent more or less, that’s not good enough.”

The post Glass Half Full (roughly speaking) appeared first on Terra Magazine.

]]>